M17/4/PHYSI/HP3/ENG/TZ2/XX/M

Markscheme

May 2017

Physics

Higher level

Paper 3

26 pages

M17/4/PHYSI/HP3/ENG/TZ2/XX/M

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 3 -

Section A

C	Questi	on	Answers	Notes	Total
1.	а		 it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line ✓ 	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$d = 0.35 \pm 0.01 \text{ AND } \Delta d = 0.05 \pm 0.01 \text{ cm} \text{ w} \checkmark$ $\frac{\Delta d}{d} = \frac{0.05}{0.35} \text{ w} = 0.14$ OR $\frac{1}{7} \text{ or } 14 \% \text{ or } 0.1 \checkmark$	Allow final answers in the range of 0.11 to 0.18. Allow [1 max] for 0.03 to 0.04 if $\times = \lambda 5$ 10 ⁶ m is used.	2
	b	ii	28 to 30 % ✓	Allow ECF from (b)(i), but only accept answer as a %	1
	С	i	a: m ² ✓ b: m ✓	Allow answers in words	2

(continued...)

(Question 1 continued)

Questi	on	Answers	Notes	Total
C	ii	ALTERNATIVE 1 – if graph on page 4 is used $d^2 = 0.040 \times 10^{-4} \ll m^2 \gg \checkmark$ $d = 0.20 \times 10^{-2} \ll m \gg \checkmark$ ALTERNATIVE 2 – if graph on page 2 is used any evidence that <i>d</i> intercept has been determined \checkmark $d = 0.20 \pm 0.05 \ll cm \gg \checkmark$	For MP1 accept answers in range of 0.020 to 0.060 « cm ₂ » if they fail to use given value of "a". For MP2 accept answers in range 0.14 to 0.25 « cm » .	2

C	Question	Answers	Notes	Total
2.	a	correct labelling of both instruments ✓	A	1
	b	$V = E - Ir \checkmark$ large triangle to find gradient and correct read-offs from the line OR use of intercept $E = 1.5$ V and another correct data point \checkmark internal resistance = 0.60 Ω \checkmark	For MP1 – do not award if only $R = \frac{V}{I}$ is used. For MP2 points at least 1A apart must be used. For MP3 accept final answers in the range of 0.55 Ω to 0.65 Ω .	3

(continued...)

.

(Question 2 continued)

Questi	on	Answers	Notes	Total
С	i	a non-zero reading when a zero reading is expected/no current is flowing <i>OR</i> a calibration error ✓	OWTTE Do not accept just "systematic error".	1
c	ii	the error causes «all» measurements to be high/different/incorrect \checkmark effect on calculations/gradient will cancel out <i>OR</i> effect is that value for <i>r</i> is unchanged \checkmark	Award [1 max] for statement of "no effect" without valid argument. OWTTE	2

Section B

-7-

Option A — Relativity

Question		Answers	Notes	Total
3.	а	the speed of light is a universal constant/invariant <i>OR</i> <i>c</i> does not depend on velocity of source/observer ✓ electric and magnetic fields/forces unified/frame of reference dependant ✓		1 max
	b	observer X will measure zero «magnetic or electric» force ✓ observer Y must measure both electric and magnetic forces ✓ which must be equal and opposite so that observer Y also measures zero force ✓	Allow [2 max] for a comment that both X and Y measure zero resultant force even if no valid explanation is given.	3

Question

4.

Answers	Notes	Total
ALTERNATIVE 1 — for answers in terms of time	Accept answers from one of the alternatives.	
overall idea that more muons are detected at the ground than expected «without	allematives.	

«Earth frame transit time = $\frac{2000}{0.98c}$ » = 6.8 « µs » \checkmark
« Earth frame dilation of proper half-life = 2.2 μ s × 5 » = 11 « μ s »
OR

~ ~ ~ ~

« muon's proper transit time $=\frac{6.8 \,\mu s}{5}$ » = 1.4 « μs » \checkmark

ALTERNATIVE 2 – for answers in terms of distance

overall idea that more muons are detected at the ground than expected «without time dilation» ✓

- 8 -

« distance muons can travel in a proper lifetime = 2.2 μ s × 0.98*c* » = 650 « m » \checkmark

« Earth frame lifetime distance due to time dilation = $650 \text{ m} \times 5 \text{ }$ » = 3250«m»

OR

time dilation» ✓

« muon frame distance travelled = $\frac{2000}{5}$ » = 400 « m » \checkmark

3

Q	uestic	on	Answers	Notes	Total
5.	а	i	the gamma factor is $\frac{5}{3}$ or 1.67 \checkmark $L = \frac{450}{\frac{5}{3}} = 270 \text{ sm} \checkmark$	Allow ECF from MP1 to MP2.	2
	a	ii	$u' = \left(\frac{u - v}{1 - \frac{uv}{c^2}} \right) = \frac{0.20c - 0.80c}{1 - 0.20 \times 0.80}$ OR $0.2c = \frac{0.80c + u'}{1 + 0.80u'} \checkmark$ $u' = \left(- \right) = 0.71c \checkmark$	Check signs and values carefully.	2
	b	i	$\Delta t' = \ll \gamma \left(\Delta t - \frac{v \Delta x}{c^2} \right) = \gg \frac{5}{3} \times \left(0 - \frac{(0.80c \times 9000)}{c^2} \right) \checkmark$ $\Delta t' = \ll -\gg 4.0 \times 10^{-5} \ll \text{s} \implies \checkmark$	Allow ECF for use of wrong γ from (a)(i).	2
	b	ii	lamp 2 turns on first ✔	Ignore any explanation	1

(continued...)

(Question 5 continued)

Questi	ion	Answers	Notes	Total
С	i	x coordinate as shown ✓	Labels must be clear and unambiguous.	
		<i>ct</i> coordinate as shown ✓	Construction lines are optional.	
		space station <i>ct</i> -axis event 2 1.0 m rocket <i>ct</i> '-axis event 2 1.0 m rocket <i>x'</i> -axis event 1 x space station <i>x</i> -axis		2
c	ii	«in any other frame» <i>ct</i> is greater ✓ the interval <i>ct'</i> = 1.0 «m» is proper time <i>OR</i> <i>ct</i> is a dilated time <i>OR</i> <i>ct</i> = $\gamma ct'$ «= γ » ✓	MP1 is a statement MP2 is an explanation	2
c	iii	use of $c^{2}t^{2} - x^{2} = c^{2}t'^{2} - x'^{2} \checkmark$ $c^{2}t^{2} - x^{2} = 1^{2} - 0^{2} = 1 \ll m^{2} \gg \checkmark$	For MP1 equation must be used. Award [2] for correct answer that first finds <i>x</i> (1.33 m) and ct (1.66 m)	2

Question	Answers	Notes	Total
6.	pion momentum is $\gamma mv = 1.2265 \times 140 \times 0.579 = 99.4$ «MeV c ⁻¹ » \checkmark	Accept pion momentum calculation using $E^2 = p^2c^2 + m^2c^4$.	
	use of momentum conservation to realize that produced particles have equal and opposite momenta \checkmark	Award [2 max] for a non-relativistic answer of $v = 0.0864c$.	4
	so for proton $\gamma v = \frac{99.4}{938} = 0.106c \checkmark$		•
	solving to get $v = 0.105c$ \checkmark		

7.	а	i	the surface at which the escape speed is the speed for light	Accept distance as alternative to surface.	
			OR		
			the surface from which nothing/not even light can escape to the outside		1
			OR		
			the surface of a sphere whose radius is the Schwarzschild radius \checkmark		
	а	ii	use of $A = 4\pi R^2$ and $R = \frac{2GM}{c^2}$		_
			$ \text{ (to get } A = \frac{16\pi G^2 M^2}{c^4}) $		1

(continued...)

(Question 7 continued)

Questi	on	Answers	Notes	Total
а	111	since mass and energy can never leave a black hole and $A = \frac{16\pi G^2 M^2}{c^4}$		
		OR		1
		some statement that area is increasing with mass \checkmark		
		«the area cannot decrease»		
b		ALTERNATIVE 1 — (student/planet frame):		
		photon energy/frequency decreases with height		
		OR		
		there is a gravitational redshift \checkmark		
		detector in ceiling is approaching photons so Doppler blue shift \checkmark		3
		two effects cancel/frequency unchanged 🗸		3
		ALTERNATIVE 2 – (box frame):		
		by equivalence principle box is an inertial frame \checkmark		
		so no force on photons ✓		
		so no redshift/frequency unchanged 🗸		

Ontion B

Option B — Engineering physics

Q	uestic	on	Answers	Notes	Total
8.	а	i	zero ✓		1
	а	ii	the torque of each force is $9.60 \times 10^3 \times 6.0 = 5.76 \times 10^4$ «Nm» \checkmark	Allow a one-step solution.	2
			so the net torque is $2 \times 5.76 \times 10^4 = 1.15 \times 10^5$ «Nm» \checkmark		
	b		the angular acceleration is given by $\frac{1.15 \times 10^5}{1.44 \times 10^4} \ll 8.0 \text{ s}^{-2} \gg \checkmark$ $\omega = \alpha t = 8.0 \times 2.00 = 16 \ll \text{s}^{-1} \gg \checkmark$		2
	с	i	$1.44 \times 10^4 \times 16.0 = (1.44 \times 10^4 + 4.80 \times 10^3) \times \omega$ $\omega = 12.0 \text{s}^{-1} \text{s}$	Allow ECF from (b).	2
	с	II	initial KE $\frac{1}{2} \times 1.44 \times 10^4 \times 16.0^2 = 1.843 \times 10^6 \text{ sJ} \text{ s} \text{ s}$ final KE $\frac{1}{2} \times (1.44 \times 10^4 + 4.80 \times 10^3) \times 12.0^2 = 1.382 \times 10^6 \text{ sJ} \text{ s} \text{ s}$	Allow ECF from part (c)(i).	3
			loss of KE = 4.6×10^5 «J» \checkmark		

Question

а

а

i

ii

iii

а

9.

		IG/122/XX/I
Answers	Notes	Total
$\Delta U = 0 \text{ so } Q = \Delta U + W = 0 + 416 = 416 \text{ «J} \text{ ~ } \checkmark$	Answer given, mark is for the proof.	1
ALTERNATIVE 1		
use $pV^{\frac{5}{3}} = c$ to get $TV^{\frac{2}{3}} = c \checkmark$	Answer of 386K is given. Look carefully for correct working if answers are to 3 SF.	
hence $T_{\rm C} = T_{\rm A} \left(\frac{V_{\rm A}}{V_{\rm C}} \right)^{\frac{2}{3}} = 612 \times 0.5^{\frac{2}{3}} = 385.54$ \checkmark		

«T _c	≈ 386K »	

ALTERNATIVE 2

 $\ll T_{\rm C} \approx 386 {\rm K}$ »

«-332 J»

 $Q = \Delta U + W = \frac{3}{2} \frac{P_A V_A}{T_A} \Delta T + 0 \checkmark$

 $P_{\rm C}V_{\rm C}^{\gamma} = P_{\rm A}V_{\rm A}^{\gamma}$ giving $P_{\rm C} = 1.26 \times 10^6$ «Pa» \checkmark

 $Q = \frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times (386 - 612) \checkmark$

 $\frac{P_{\rm C}V_{\rm C}}{T_{\rm C}} = \frac{P_{\rm A}V_{\rm A}}{T_{\rm A}}$ giving $T_{\rm C} = 1.26 \times \frac{612}{2} = 385.54$ «K» \checkmark

There are other methods:	
--------------------------	--

Allow use of $P_{\rm B} = 2 \times 10^6$ «Pa» and $\frac{P}{\tau}$ is constant for BC.

Allow use of
$$n = 0.118$$
 and $T_{\rm C} = \frac{P_{\rm C}V_{\rm C}}{nR}$.

Answer of 330 J given in the question.
Look for correct working or more than 2 SF.

(continued...)

2

2

(Question 9 continued)

Qu	estic	on	Answers	Notes	Total
	а	iv	$e = \frac{Q_{in} - Q_{out}}{Q_{in}} = \frac{416 - 332}{416} \checkmark$ $e = 0.20 \checkmark$	Allow $\frac{416 - 330}{416}$. Allow e=0.21.	2
	b		entropy is largest at B \checkmark entropy increases from A to B because T =constant but volume increases so more disorder or $\Delta S = \frac{Q}{T}$ and $Q > 0$ so $\Delta S > 0 \checkmark$ entropy is constant along CA because it is adiabatic, $Q=0$ and so $\Delta S = 0$ <i>OR</i> entropy decreases along BC since energy has been removed, $\Delta Q < 0$ so $\Delta S < 0 \checkmark$		3

Q	uesti	on	Answers	Notes	Total
10.	а	i	$\Delta p = \left(\frac{1}{2} \rho \left(v_T^2 - v_L^2 \right) \right) = \frac{1}{2} \times 1.20 \times (28.4^2 - 16.6^2) = 318.6 \text{ (Pa} \text{ Pa} \text{ (Pa} \text{ Pa} \text{ Pa} \text{ (Pa} \text{ Pa} \text$	Allow ECF from MP1.	2
	а	ii	downward arrow of any length or position ✓	Accept any downward arrow not just vertical.	1
	b		flow is laminar/non-turbulent <i>OR</i> Bernoulli's equation holds <i>OR</i> pressure is uniform on each hemisphere <i>OR</i> diameter of ball can be ignored $/\rho gz = constant \checkmark$		1

Q	uestio	on	Answers	Notes	Total
11.	а		lower peak ✓	Award [0] if peak is higher.	
			identical behaviour to original curve at extremes \checkmark	For MP2 do not accept curves which cross.	
			peak frequency shifted to the left \checkmark		
			A		2 max
	b	i	displacement of vibrator is 0 \checkmark	Do not penalize sign of phase difference.	
			because phase difference is $\frac{\pi}{2}$ or 90° or $\frac{1}{4}$ period \checkmark	Do not accept $\frac{\lambda}{4}$ for MP2	2
	b	ii	resonant $f = 0.125 \text{ w Hz }$		
			$\frac{25}{(2\pi \times 0.125)} = 32 \text{(s)} \checkmark$	Watch for ECF from MP1 to MP2.	2

– 17 –

M17/4/PHYSI/HP3/ENG/TZ2/XX/M

Option C — Imaging

Q	uesti	on	Answers	Notes	Total
12.	a	i	line of correct curvature as shown ✓		1
	a	ii	line of approximately correct curvature as shown ✓		1

(continued...)

(Question 12 continued)

Question		Answers	Notes	Total
b		 wave travels slower in glass than in air OR RI greater for glass ✓ wavelength less in glass than air ✓ hence wave from Q will cover a shorter distance «than in air» causing the curvature shown ✓ 	OWTTE	2 max
C		realization that the two lenses must have a common focal point \checkmark distance is $12-4.0 = 8.0 \ll \text{cm} \gg \checkmark$	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12–4=8 «cm».	2

13.	а	states $f_{o} + f_{e} = 90$ AND $\frac{f_{o}}{f_{e}} = 17$ \checkmark solves to give $f_{o} = 85$ AND $f_{e} = 5 \ll \text{cm} \gg \checkmark$	Both needed. Both needed.	2
	b	angle subtended by Moon is $\frac{0.16}{17} = 0.0094 \text{ «rad » } \checkmark$ $0.0094 = \frac{D}{3.8 \times 10^8} \checkmark$ $D = 3.6 \times 10^6 \text{ «m » } \checkmark$	Allow ECF from MP1. Allow [2] for an answer of 6.1×10^7 «m» if the factor of 17 is missing in MP1.	3
	с	operation day and night ✓ operation at all wavelengths/no atmospheric absorption ✓ operation without atmospheric turbulence/light pollution ✓	Accept any other sensible advantages.	2 max

Q	Question		Answers	Notes	Total
14.	а		calculation of critical angle at core–cladding boundary «1.52×sin $\theta_c = 1.48$ » $\theta_c = 76.8^\circ$ ✓ refraction angle at air–core boundary 90° – 76.8° = 13.2° ✓ «1.52×sin13.2° = sin <i>A</i> » <i>A</i> = 20.3° ✓	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	<i>attenuation</i> : output signal has smaller area ✓	OWTTE	2
			<i>dispersion</i> : output signal is wider than input signal \checkmark	OWTTE	
	b	ii	attenuation = «10 log $\frac{I}{I_0}$ = 10 log $\frac{77}{320}$ = » « – » 6.2 « dB » \checkmark	Allow intensity ratio to be inverted.	
			$\frac{-6.2}{5.1} = $ «-» 1.2 «dB km ⁻¹ » \checkmark	Allow ECF from MP1 to MP2.	2

Question		on	Answers	Notes	Total
15.	а		accept any value between 1 MHz to 20 MHz ✓		1
	b		 an alternating electrical signal is applied to a crystal ✓ crystal vibrates emitting sound ✓ frequency of vibration of crystal is the same as the frequency of the ac ✓ mention of piezoelectric effect/crystal ✓ 		3 max
	с	i	$Z_{\text{muscle}} = 1.71 \times 10^6 \text{wkg m}^{-2} \text{s}^{-1} \text{w} \text{\checkmark}$		1
	С	ii		Allow ECF from (c)(i). Allow ECF from MP1 to MP2.	2

Question	Answers	Notes	Total
Question 16.	Answers a «strong» magnetic field aligns proton «spins» ✓ an RF signal is applied to excite protons OR change spin up to spin down state ✓ protons de-excite/return to lower energy state OR proton relaxation occurs ✓	Notes OWTTE Treat any mention of the following as neutral as they are not strictly relevant to the question: gradient field, Larmor frequency, precession, resonance, 3-D image	Total 3 max
	with emission of RF radiation «that is detected» \checkmark		

Option D — Astrophysics

Question		on	Answers	Notes	Total	
17.	а		<i>core</i> : helium ✓	Accept no other elements.	2	
			<i>outer layer</i> ∶ hydrogen ✓		E .	
	b		ratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$		3	
			ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$			
			so ratio of densities is $\frac{10^2}{10^6} = 10^{-4}$ \checkmark	Allow ECF for MP3 from earlier MPs		
	с	i	line to the right of X, possibly undulating, very roughly horizontal \checkmark	Ignore any paths beyond this as the star disappears from diagram.	1	
	С	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/Pauli exclusion principle ✓	Do not accept electron degeneracy.	1	
	С	iii	$L = \sigma A T^{4} = 5.67 \times 10^{-8} \times 4\pi \times (2.0 \times 10^{4})^{2} \times (10^{6})^{4} \checkmark$			
			$L = 3 \times 10^{26} \text{ wW}$	Allow ECF for [1 max] if πr^2 used (gives 7×10^{25} «W »)	2	
			OR	Allow ECF for a POT error in MP1.		
			$L = 2.85 \times 10^{26} \text{ wW} \text{ s} $			
	с	iv	$\lambda = \frac{2.9 \times 10^{-3}}{10^6} = 2.9 \times 10^{-9} \text{ wm} \text{ s} \checkmark$		2	
			this is an X-ray wavelength ✓			

Question		on	Answers	Notes	Total
18.	a		theory in which all space/time/energy/matter were created at a point/singularity ✓ at enormous temperature ✓ with the volume of the universe increasing ever since or the universe expanding ✓	OWTTE	2 max
	b		CMB has a black-body spectrum ✓ wavelength stretched by expansion ✓ is highly isotropic/homogenous ✓ but has minor anisotropies predicted by BB model ✓ <i>T</i> «= 2.7 K» is close to predicted value ✓	For MP4 and MP5 idea of "prediction" is needed	2 max
	с	i	$\frac{v}{c} = z \Longrightarrow v = 0.084 \times 3 \times 10^5 = 2.52 \times 10^4 \text{ wkms}^{-1} \text{ w} \checkmark$ $d = \frac{v}{H_0} = \frac{2.52 \times 10^4}{68} = 370.6 \approx 370 \text{ wkms} \checkmark$	Allow ECF from MP1 to MP2.	2
	с	ii	type la have a known luminosity/are standard candles ✓	Must refer to type Ia. Do not accept other methods (parallax, Cepheids)	

measure apparent brightness \checkmark

determine distance from $d = \sqrt{\frac{L}{4\pi b}}$

3

Question		on	Answers	Notes	Total
19.	a	i	the cosmological origin of redshift implies that the wavelength is proportional to the scale factor: $\lambda \propto R \checkmark$ combining this with Wien's law $\lambda \propto \frac{1}{T}$ <i>OR</i> use of $kT \propto \frac{hc}{\lambda} \checkmark$	Evidence of correct algebra is needed as relationship $T = \frac{k}{R}$ is given.	2
	а	ii	«gives the result» use of $T \propto \frac{1}{R}$ ✓ = 2.8 × 1100 = 3080 ≈ 3100 «K» ✓		2
	b		CMB anisotropies are related to fluctuations in density which are the cause for the formation of structures/nebulae/stars/galaxies \checkmark	OWTTE	1

Question		Answers	Notes	Total
20.	a	dark matter is invisible/cannot be seen directly OR does not interact with EM force/radiate light/reflect light ✓ interacts with gravitational force OR accounts for galactic rotation curves OR	OWTTE	2
	b	accounts for some of the "missing" mass/energy of galaxies/the universe \checkmark «from data booklet formula» $v = \sqrt{\frac{4\pi G\rho}{3}} r$ substitute to get $v = \sqrt{\frac{4\pi Gk}{3}} \checkmark$	Substitution of ρ must be seen.	1
	c	curve A shows that the outer regions of the galaxy are rotating faster than predicted ✓ this suggests that there is more mass in the outer regions that is not visible OR more mass in the form of dark matter ✓	OWTTE	2