Markscheme

May 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a		it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line \checkmark	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$\begin{aligned} & d=0.35 \pm 0.01 \text { AND } \Delta d=0.05 \pm 0.01 « \mathrm{~cm} » \\ & \text { « } \frac{\Delta d}{d}=\frac{0.05}{0.35} »=0.14 \end{aligned}$ OR $\frac{1}{7}$ or 14% or $0.1 \checkmark$	Allow final answers in the range of 0.11 to 0.18 . Allow [1 max] for 0.03 to 0.04 if $x=\lambda 5 \quad 10^{6} \mathrm{~m}$ is used.	2
	b	ii	28 to $30 \% \checkmark$	Allow ECF from (b)(i), but only accept answer as a \%	1
	C	i	$\begin{aligned} & a: \mathrm{m}^{2} \checkmark \\ & b: \mathrm{m} \checkmark \end{aligned}$	Allow answers in words	2

(continued...)
(Question 1 continued)

Question		Answers	Notes	Total
c	ii	ALTERNATIVE 1 - if graph on page 4 is used $\begin{aligned} & d^{2}=0.040 \times 10^{-4} « \mathrm{~m}^{2} » \checkmark \\ & d=0.20 \times 10^{-2} « \mathrm{~m} » \checkmark \end{aligned}$ ALTERNATIVE 2 - if graph on page 2 is used any evidence that d intercept has been determined \checkmark $d=0.20 \pm 0.05$ «cm» \checkmark	For MP1 accept answers in range of 0.020 to $0.060 « \mathrm{~cm}_{2}$ » if they fail to use given value of " a ". For MP2 accept answers in range 0.14 to 0.25 « cm ».	2

Question			Answers	Notes	Total
2.	a		correct labelling of both instruments \checkmark		1
	b		$V=E-\operatorname{Ir} \checkmark$ large triangle to find gradient and correct read-offs from the line OR use of intercept $E=1.5 \mathrm{~V}$ and another correct data point \checkmark internal resistance $=0.60 \Omega \checkmark$	For MP1 - do not award if only $R=\frac{V}{I}$ is used. For MP2 points at least 1A apart must be used. For MP3 accept final answers in the range of 0.55Ω to 0.65Ω.	3

(Question 2 continued)

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | c | \mathbf{i} | a non-zero reading when a zero reading is expected/no current is
 flowing
 OR
 a calibration error \checkmark | OWTTE
 Do not accept just "systematic error". |
| | c | ii | the error causes «all» measurements to be high/different/incorrect \checkmark
 effect on calculations/gradient will cancel out
 OR
 effect is that value for r is unchanged \checkmark | Award [1 max] for statement of "no effect" without
 valid argument.
 OWTTE |

Section B

Option A - Relativity

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 3. | a | the speed of light is a universal constant/invariant
 OR
 c does not depend on velocity of source/observer \checkmark
 electric and magnetic fields/forces unified/frame of reference dependant \checkmark | $\mathbf{1 ~ m a x}$ | |
| | b | observer X will measure zero «magnetic or electric» force \checkmark
 observer Y must measure both electric and magnetic forces \checkmark
 which must be equal and opposite so that observer Y also measures zero force \checkmark | Allow [2 max] for a comment that both
 X and Y measure zero resultant force
 even if no valid explanation is given. | $\mathbf{3}$ |

Question		Answers	Notes	Total
4.		ALTERNATIVE 1 - for answers in terms of time overall idea that more muons are detected at the ground than expected «without time dilation» \checkmark «Earth frame transit time $=\frac{2000}{0.98 c} »=6.8 « \mu \mathrm{~s} » \checkmark$ «Earth frame dilation of proper half-life $=2.2 \mu \mathrm{~s} \times 5 »=11 « \mu \mathrm{~s}$ » OR «muon's proper transit time $=\frac{6.8 \mu \mathrm{~s}}{5} »=1.4 « \mu \mathrm{~s} »$ ALTERNATIVE 2 - for answers in terms of distance overall idea that more muons are detected at the ground than expected «without time dilation» \downarrow «distance muons can travel in a proper lifetime $=2.2 \mu \mathrm{~s} \times 0.98 \mathrm{c} »=650$ «m» \downarrow «Earth frame lifetime distance due to time dilation $=650 \mathrm{~m} \times 5$ » $=3250$ « $\mathrm{m} »$ OR «muon frame distance travelled $=\frac{2000}{5} »=400$ «m»	Accept answers from one of the alternatives.	3

Question			Answers	Notes	Total
5.	a	i	the gamma factor is $\frac{5}{3}$ or 1.67 $L=\frac{450}{\frac{5}{3}}=270 « \mathrm{~m} »$	Allow ECF from MP1 to MP2.	2
	a	ii	$u^{\prime}=« \frac{u-v}{1-\frac{u v}{c^{2}}}=» \frac{0.20 c-0.80 c}{1-0.20 \times 0.80}$ OR $0.2 c=\frac{0.80 c+u^{\prime}}{1+0.80 u^{\prime}}$ $u^{\prime}=«-» 0.71 c \quad \checkmark$	Check signs and values carefully.	2
	b	i	$\begin{aligned} & \Delta t^{\prime}=« \gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right)=» \frac{5}{3} \times\left(0-\frac{(0.80 c \times 9000)}{c^{2}}\right) \checkmark \\ & \Delta t^{\prime}=«-» 4.0 \times 10^{-5} « \mathrm{~s} » \checkmark \end{aligned}$	Allow ECF for use of wrong γ from (a)(i).	2
	b	ii	lamp 2 turns on first \checkmark	Ignore any explanation	1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
	C	i	x coordinate as shown \checkmark ct coordinate as shown \checkmark	Labels must be clear and unambiguous. Construction lines are optional.	2
	c	ii	«in any other frame» ct is greater \checkmark the interval $c t^{\prime}=1.0$ « $\mathrm{m} »$ is proper time OR ct is a dilated time OR $c t=\gamma c t^{\prime} «=\gamma » \checkmark$	MP1 is a statement MP2 is an explanation	2
	C	iii	use of $c^{2} t^{2}-x^{2}=c^{2} t^{\prime 2}-x^{\prime 2} \checkmark$ $c^{2} t^{2}-x^{2}=1^{2}-0^{2}=1 « m^{2}$ »	For MP1 equation must be used. Award [2] for correct answer that first finds $x(1.33 \mathrm{~m})$ and ct (1.66 m)	2

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 6. | pion momentum is $\gamma m v=1.2265 \times 140 \times 0.579=99.4 « \mathrm{MeV} \mathrm{c}^{-1} » \checkmark$
 use of momentum conservation to realize that produced particles have equal
 and opposite momenta \checkmark
 so for proton $\gamma v=\frac{99.4}{938}=0.106 c \checkmark$
 solving to get $v=0.105 c \checkmark$ | Accept pion momentum calculation using
 $E^{2}=p^{2} c^{2}+m^{2} c^{4}$.
 Award $[2$ max for a non-relativistic
 answer of $v=0.0864 c$. | 4 | |

7.	a	i	the surface at which the escape speed is the speed for light OR the surface from which nothing/not even light can escape to the outside OR the surface of a sphere whose radius is the Schwarzschild radius \checkmark	Accept distance as alternative to surface.	
	a	ii	use of $A=4 \pi R^{2}$ and $R=\frac{2 G M}{c^{2}} \checkmark$ «to get $A=\frac{16 \pi G^{2} M^{2}}{c^{4}} »$		1

(Question 7 continued)

Question			Answers	Notes	Total
	a	iii	since mass and energy can never leave a black hole and $A=\frac{16 \pi G^{2} M^{2}}{c^{4}}$ OR some statement that area is increasing with mass «the area cannot decrease»		1
	b		ALTERNATIVE 1 - (student/planet frame): photon energy/frequency decreases with height OR there is a gravitational redshift \checkmark detector in ceiling is approaching photons so Doppler blue shift \checkmark two effects cancel/frequency unchanged \checkmark ALTERNATIVE 2 - (box frame): by equivalence principle box is an inertial frame \checkmark so no force on photons \checkmark so no redshift/frequency unchanged \checkmark		3

Option B — Engineering physics

Question			Answers	Notes	Total 1
8.	a	i	zero \checkmark		
	a	ii	the torque of each force is $9.60 \times 10^{3} \times 6.0=5.76 \times 10^{4}$ « Nm » \checkmark so the net torque is $2 \times 5.76 \times 10^{4}=1.15 \times 10^{5}$ «Nm» \checkmark	Allow a one-step solution.	2
	b		the angular acceleration is given by $\frac{1.15 \times 10^{5}}{1.44 \times 10^{4}}$ « $=8.0 \mathrm{~s}^{-2}$ » \checkmark $\omega=\alpha t=8.0 \times 2.00=16 « \mathrm{~s}^{-1} » \checkmark$		2
	C	i	$\begin{aligned} & 1.44 \times 10^{4} \times 16.0=\left(1.44 \times 10^{4}+4.80 \times 10^{3}\right) \times \omega \checkmark \\ & \omega=12.0 « \mathrm{~s}^{-1} » \checkmark \end{aligned}$	Allow ECF from (b).	2
	C	ii	$\begin{aligned} & \text { initial KE } \frac{1}{2} \times 1.44 \times 10^{4} \times 16.0^{2}=1.843 \times 10^{6} \text { «J» } \\ & \text { final KE } \frac{1}{2} \times\left(1.44 \times 10^{4}+4.80 \times 10^{3}\right) \times 12.0^{2}=1.382 \times 10^{6} \text { «J» } \\ & \text { loss of KE }=4.6 \times 10^{5} \text { «J» } \end{aligned}$	Allow ECF from part (c)(i).	3

Question			Answers	Notes	Total
9.	a	i	$\Delta U=0$ so $Q=\Delta U+W=0+416=416 « \mathrm{~J}$ » \checkmark	Answer given, mark is for the proof.	1
	a	ii	ALTERNATIVE 1 use $p V^{\frac{5}{3}}=c$ to get $T V^{\frac{2}{3}}=c$ hence $T_{\mathrm{C}}=T_{\mathrm{A}}\left(\frac{V_{\mathrm{A}}}{V_{\mathrm{C}}}\right)^{\frac{2}{3}}=612 \times 0.5^{\frac{2}{3}}=385.54$ $« T_{\mathrm{C}} \approx 386 \mathrm{~K} »$ ALTERNATIVE 2 $\begin{aligned} & P_{\mathrm{C}} V_{\mathrm{C}}^{\gamma}=P_{\mathrm{A}} V_{\mathrm{A}}^{\gamma} \text { giving } P_{\mathrm{C}}=1.26 \times 10^{6} « \mathrm{~Pa} » \checkmark \\ & \frac{P_{\mathrm{C}} V_{\mathrm{C}}}{T_{\mathrm{C}}}=\frac{P_{\mathrm{A}} V_{\mathrm{A}}}{T_{\mathrm{A}}} \text { giving } T_{\mathrm{C}}=1.26 \times \frac{612}{2}=385.54 « \mathrm{~K} » \checkmark \\ & « T_{\mathrm{C}} \approx 386 \mathrm{~K} » \end{aligned}$	Answer of 386K is given. Look carefully for correct working if answers are to 3 SF. There are other methods: Allow use of $P_{\mathrm{B}}=2 \times 10^{6}$ «Pa» and $\frac{P}{T}$ is constant for $B C$. Allow use of $n=0.118$ and $T_{\mathrm{C}}=\frac{P_{\mathrm{C}} V_{\mathrm{C}}}{n R}$.	2
	a	iii	$\begin{aligned} & Q=\Delta U+W=\frac{3}{2} \frac{P_{\mathrm{A}} V_{\mathrm{A}}}{T_{\mathrm{A}}} \Delta T+0 \\ & Q=\frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times(386-612) \\ & \text { «-332 } \mathrm{J} » \end{aligned}$	Answer of 330 J given in the question. Look for correct working or more than 2 SF.	2

(continued...)
(Question 9 continued)

Question			Answers	Notes	Total
	a	iv	$\begin{aligned} & e=\frac{Q_{\text {in }}-Q_{\text {out }}}{Q_{\text {in }}}=\frac{416-332}{416} \\ & e=0.20 \end{aligned}$	Allow $\frac{416-330}{416}$. Allow $e=0.21$.	2
	b		entropy is largest at $B \checkmark$ entropy increases from A to B because $T=$ constant but volume increases so more disorder or $\Delta S=\frac{Q}{T}$ and $Q>0$ so $\Delta S>0$ entropy is constant along CA because it is adiabatic, $Q=0$ and so $\Delta S=0$ OR entropy decreases along $B C$ since energy has been removed, $\Delta Q<0$ so $\Delta S<0 \checkmark$		3

Question			Answers	Notes	Total
10.	a	i	$\Delta p=« \frac{1}{2} \rho\left(v_{T}{ }^{2}-v_{L}{ }^{2}\right)=\frac{1}{2} \times 1.20 \times\left(28.4^{2}-16.6^{2}\right)=» 318.6 « \mathrm{~Pa} »$ $F=« 318.6 \times \frac{2.50 \times 10^{-2}}{4}=» 1.99 \text { «N» }$	Allow ECF from MP1.	2
	a	ii	downward arrow of any length or position \checkmark	Accept any downward arrow not just vertical.	1
	b		flow is laminar/non-turbulent OR Bernoulli's equation holds OR pressure is uniform on each hemisphere OR diameter of ball can be ignored $/ \rho \mathrm{gz}=$ constant \checkmark		1

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11. | a | | lower peak \checkmark
 identical behaviour to original curve at extremes \checkmark
 peak frequency shifted to the left \checkmark
 [0] if peak is higher. |

Option C - Imaging

Question			Answers	Notes	Total
12.	a	i	line of correct curvature as shown \checkmark		1
	a	ii	line of approximately correct curvature as shown		1

(continued...)
(Question 12 continued)

Question			Answers	Notes	Total
	b		wave travels slower in glass than in air OR RI greater for glass \checkmark wavelength less in glass than air \checkmark hence wave from Q will cover a shorter distance «than in air» causing the curvature shown \checkmark	OWTTE	2 max
	C		realization that the two lenses must have a common focal point \checkmark distance is $12-4.0=8.0$ «cm» \checkmark	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12-4=8 «cm».	2

Question			Answers	Notes	Total
14.	a		calculation of critical angle at core-cladding boundary $« 1.52 \times \sin \theta_{C}=1.48 » \theta_{C}=76.8^{\circ}$ refraction angle at air-core boundary $90^{\circ}-76.8^{\circ}=13.2^{\circ} \checkmark$ « $1.52 \times \sin 13.2^{\circ}=\sin A$ » $A=20.3^{\circ}$	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	attenuation: output signal has smaller area dispersion: output signal is wider than input signal	OWTTE OWTTE	2
	b	ii	$\begin{aligned} & \text { attenuation }=« 10 \log \frac{I}{I_{0}}=10 \log \frac{77}{320}=» «-» 6.2 « \mathrm{~dB} » \\ & \frac{-6.2}{5.1}=«-» 1.2 « \mathrm{~dB} \mathrm{~km}^{-1} » \checkmark \end{aligned}$	Allow intensity ratio to be inverted. Allow ECF from MP1 to MP2.	2

Question			Answers	Notes	Total
15.	a		accept any value between 1 MHz to $20 \mathrm{MHz} \checkmark$		1
	b		an alternating electrical signal is applied to a crystal \checkmark crystal vibrates emitting sound \checkmark frequency of vibration of crystal is the same as the frequency of the ac \checkmark mention of piezoelectric effect/crystal \checkmark		3 max
	C	i	$Z_{\text {muscle }}=1.71 \times 10^{6}$ « $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ » \checkmark		1
	C	ii	$\begin{aligned} & « \frac{I_{2}}{I_{1}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}} »=4.3 \times 10^{-3} \checkmark \\ & I_{2}=« 0.012 \times\left(4.3 \times 10^{-3}\right)=» 5.1 \times 10^{-5} « \mathrm{~W} \mathrm{~cm}^{-2} » \checkmark \end{aligned}$	Allow ECF from (c)(i). Allow ECF from MP1 to MP2.	2

Question		Answers	Notes	Total
16.		a «strong» magnetic field aligns proton «spins» \checkmark an RF signal is applied to excite protons OR change spin up to spin down state \checkmark protons de-excite/return to lower energy state OR proton relaxation occurs with emission of RF radiation «that is detected» \checkmark	OWTTE Treat any mention of the following as neutral as they are not strictly relevant to the question: gradient field, Larmor frequency, precession, resonance, 3-D image	3 max

Option D - Astrophysics

Question			Answers	Notes	Total
17.	a		core: helium outer layer: hydrogen \checkmark	Accept no other elements.	2
	b		ratio of masses is $\left(\frac{10^{4}}{10^{-3}}\right)^{\frac{1}{3.5}}=10^{2} \checkmark$ ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^{3}=10^{6} \checkmark$ so ratio of densities is $\frac{10^{2}}{10^{6}}=10^{-4}$	Allow ECF for MP3 from earlier MPs	3
	C	i	line to the right of X , possibly undulating, very roughly horizontal \checkmark	Ignore any paths beyond this as the star disappears from diagram.	1
	C	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/Pauli exclusion principle	Do not accept electron degeneracy.	1
	C	iii	$\begin{aligned} & L=\sigma A T^{4}=5.67 \times 10^{-8} \times 4 \pi \times\left(2.0 \times 10^{4}\right)^{2} \times\left(10^{6}\right)^{4} \\ & L=3 \times 10^{26} « \mathrm{~W} » \end{aligned}$ OR $L=2.85 \times 10^{26} « W » \checkmark$	Allow ECF for [1 max] if πr^{2} used (gives $7 \times 10^{25} « W$ ») Allow ECF for a POT error in MP1.	2
	C	iv	$\lambda=\frac{2.9 \times 10^{-3}}{10^{6}}=2.9 \times 10^{-9} \text { «m» }$ this is an X-ray wavelength \checkmark		2

Question			Answers	Notes	Total
18.	a		theory in which all space/time/energy/matter were created at a point/singularity \checkmark at enormous temperature \checkmark with the volume of the universe increasing ever since or the universe expanding \checkmark	OWTTE	2 max
	b		CMB has a black-body spectrum wavelength stretched by expansion \checkmark is highly isotropic/homogenous \checkmark but has minor anisotropies predicted by BB model \checkmark $T «=2.7 \mathrm{~K} »$ is close to predicted value \checkmark	For MP4 and MP5 idea of "prediction" is needed	2 max
	C	i	$\frac{v}{c}=z \Rightarrow v=0.084 \times 3 \times 10^{5}=2.52 \times 10^{4} « \mathrm{kms}^{-1} » \checkmark$ $d=\frac{v}{H_{0}}=\frac{2.52 \times 10^{4}}{68}=370.6 \approx 370 « \mathrm{Mpc} » \downarrow$	Allow ECF from MP1 to MP2.	2
	C	ii	type la have a known luminosity/are standard candles \checkmark measure apparent brightness \checkmark determine distance from $d=\sqrt{\frac{L}{4 \pi b}} \checkmark$	Must refer to type la. Do not accept other methods (parallax, Cepheids)	3

Question		Answers	Notes	Total	
19.	a	i	the cosmological origin of redshift implies that the wavelength is proportional to the scale factor: $\lambda \propto R$ combining this with Wien's law $\lambda \propto \frac{1}{T}$ OR use of $k T \propto \frac{h c}{\lambda} \checkmark$ «gives the result»	Evidence of correct algebra is needed as relationship $T=\frac{k}{R}$ is given.	
	a	ii	use of $T \propto \frac{1}{R} \checkmark$ $=2.8 \times 1100=3080 \approx 3100$ «K» \checkmark		
	b	CMB anisotropies are related to fluctuations in density which are the cause for the formation of structures/nebulae/stars/galaxies \checkmark	OWTTE		

Question			Answers	Notes	Total
20.	a		dark matter is invisible/cannot be seen directly OR does not interact with EM force/radiate light/reflect light interacts with gravitational force OR accounts for galactic rotation curves OR accounts for some of the "missing" mass/energy of galaxies/the universe \checkmark	OWTTE	2
	b		«from data booklet formula» $v=\sqrt{\frac{4 \pi G \rho}{3}} r$ substitute to get $v=\sqrt{\frac{4 \pi G k}{3}} \checkmark$	Substitution of ρ must be seen.	1
	c		curve A shows that the outer regions of the galaxy are rotating faster than predicted \checkmark this suggests that there is more mass in the outer regions that is not visible OR more mass in the form of dark matter \checkmark	OWTTE	2

